

Tetrahedron Letters 42 (2001) 7987-7989

TETRAHEDRON LETTERS

Photoswitching of the association of a permethylated α-cyclodextrin-azobenzene dyad forming a Janus [2]pseudorotaxane[†]

Tatsuhiko Fujimoto,^a Asao Nakamura,^b Yoshihisa Inoue,^b Yoshiteru Sakata^a and Takahiro Kaneda^{a,*}

^aThe Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan ^bInoue Photochirogenesis Project, ERATO, JST, 4-6-3 Kamishinden, Toyonaka, Osaka 560-0085, Japan

Received 13 June 2001; revised 17 August 2001; accepted 21 August 2001

Abstract—For achieving the on-off operation of the superstructure formation of hermaphrodite cyclodextrin derivatives, we synthesized azobenzene-modified permethylated α -cyclodextrins, 1 and 2. These compounds formed Janus [2]pseudorotaxanes in CD₃OD–D₂O mixtures. The *E-Z* photoisomerization of 1 by UV light irradiation resulted in the dissociation of the superstructure, but, by boiling the solution, the superstructure was recovered through the thermal isomerization of (*Z*)-1 to (*E*)-1. These processes could be repeated many times without any side reactions. This is the first example of the dynamic control of the [2]pseudorotaxane formation of modified cyclodextrins by external stimuli. © 2001 Elsevier Science Ltd. All rights reserved.

Superstructures such as daisy chains formed by the self-association of hermaphrodite molecules have attracted considerable interest from the viewpoint of the assembly of molecular machines.¹ Cyclodextrins (CDs) are particularly convenient scaffolds for constructing the hermaphrodite molecules. Recently, several cyclic *n*-mers of modified cyclodextrins, [n]supercyclodextrins^{2b} ([n]SCDs), or [n]pseudoro-taxanes,² and [n]rotaxanes,³ have been reported, but hitherto no dynamic control of such superstructures by external stimuli has been attempted.⁴ Here, we report the photodissociation and reassociation of a Janus^{3a} [2]pseudorotaxane.

As the photoreactive hermaphrodite compounds we synthesized 1 and 2. The desired compounds 1 and 2 were obtained in 76 and 40% yields, respectively, by the reactions of 6-*O*-monotosyl permethylated α -CD⁵ with an excess of 4-hydroxy- and 4,4'-dihydroxy-azoben-zenes, in *N*,*N*-dimethylformamide at 80°C for 24 h (Scheme 1).⁶

An NMR spectrum of a solution of 1 in CD₃OD is shown in Fig. 2(a). The series of permethylated α cyclodextrin-azobenzene dyads tested so far have always given NMR signals for the cyclic oligomeric species separated from those for the monomeric species because of very slow association-dissociation equilibrium.² The absence of any additional peaks in the NMR spectrum of 1 in CD₃OD means that this compound does not form any oligomers in this solvent. Upon photoirradiation of the solution by UV light⁷ the photoisomerization of (E)-1 to (Z)-1 was observed by the changes in the UV-vis absorption spectrum (Fig. 1) and in the NMR spectrum (Fig. 2(b)), where five sets of new signals (a"-e") were observed after photoirradiation. The product (Z)-1 also absorbs the incident light with a smaller molar absorption coefficient. Therefore, the change in the molar ratio of (Z)-1 to (E)-1 stopped

0040-4039/01/\$ - see front matter © 2001 Elsevier Science Ltd. All rights reserved. PII: S0040-4039(01)01563-5

Keywords: azo compounds; cyclodextrins; photochemistry; supramolecular chemistry.

^{*} Corresponding author. Fax: +81-6-6879-8479; e-mail: kaneda@ sanken.osaka-u.ac.jp

[†] This paper is dedicated to Emeritus Professor Masazumi Nakagawa on the occasion of his 85th birthday.

Figure 1. Absorption spectra of 1 (1.08×10^{-4} M) in CD₃OD–D₂O (1:1) in the dark (solid line) and after photoirradiation (dotted line).

within 15 min, when a photostationary state was reached. At the photostationary state 33% of 1 was transformed into the Z form (Table 1). The Z form was stable at room temperature for over 24 h. Unfortunately, for compound 2 which showed better solubility to polar solvents and better self-associating ability compared to 1, the formation of the Z isomer upon photoirradiation was not observed. This is probably because the thermal back-reaction starting from (Z)-2 to (E)-2 is very fast.

On using a solvent mixture of higher polarity, CD_3OD-D_2O (4:1), four sets of new doublets were observed in the NMR spectrum in the dark (a'-d' in Fig. 2(c)), indicating the formation of a single, symmetrical *n*-mer as a minor species. To determine the association number for the new species, a more polar medium CD_3OD-D_2O (2:1) was used because of a harmonious balance between the solubility and the intensity ratio of the species to (*E*)-1. We obtained the values of $n=1.98\pm 0.27$ and $K_2=2600\pm210$,⁸ and therefore we identified the new species with a [2]SCD or a Janus [2]pseudorotaxane **3**.

Upon photoirradiation of UV light, the signal peaks for [2]SCD disappeared from the NMR spectrum (Fig. 2(d)), and the pattern of the remaining signals was very much similar to that obtained for the photoirradiated CD₃OD solution. The population of each species contained in the solution after photoirradiation was estimated with the NMR peak areas. The results are listed in Table 1. The population of (E)-1 decreased from 70 to 50% upon photoirradiation. This leads to a drastic decrease in the concentration of 3. (Z)-1 populated 50%after photoirradiation, but no formation of a new associated species was observed in the NMR spectra. This means that (Z)-1 does not form any complex even in CD_3OD-D_2O (4:1). This is probably because the bent, bulky structure of the (Z)-azobenzene moiety prevents the axle from passing through the wheel.

As the solvent polarity became much higher, the Z to E ratio in the photostationary state became larger. However, as the stability of **3** rose with increasing solvent polarity, the population of **3** increased accordingly. (Z)-1 was easily isomerized back to (E)-1 by heating the solution nearly up to boiling point for 10 minutes. In the CD_3OD-D_2O (4:1) solution the recovery of (E)-1 by heating immediately induced the formation of the compound 3. Thus, the heating triggered the re-associa-

Figure 2. The aromatic region of 270 MHz ¹H NMR spectra of **1**. 5.08 mM in CD₃OD: (a) in the dark; (b) after photoirradiation, 4.07 mM in CD₃OD–D₂O (4:1); (c) in the dark; (d) after photoirradiation.

T. Fujimoto et al. / Tetrahedron Letters 42 (2001) 7987-7989

Scheme 2.

Table 1. Population of (E)-, (Z)-1 and 3 under various conditions^a

Conditions		(E) -1 (%)	(Z)- 1 (%)	3 (%)
CDCl ₃	Dark	100	0	0
5	PS^{b}	79	21	0
CD ₃ OD (5.08 mM)	Dark	100	0	0
	PS	67	33	0
CD_3OD-D_2O (4:1) (4.07 mM)	Dark	70	0	30
	PS	50	50	Trace
CD ₃ OD–D ₂ O (2:1) ^c (<3.39 mM)	Dark	50	0	50
	PS	35	55	9
$CD_3OD-D_2O (1:1)^c$ (<2.54 mM)	Dark	27	0	73
· /	PS	17	60	23

^a Estimated by the NMR method.

^b PS, photostationary state.

^c The exact concentration is not known, because of precipitates formed during the measurement.

tion of **1**. By repeating photoirradiation and heating alternately the dissociation and re-association of **1** was achieved nearly endlessly without any side reactions (Scheme 2).

In conclusion, the compounds 1 and 2 in CD_3OD-D_2O mixtures formed Janus [2]pseudorotaxanes or [2]SCDs. A substantial portion of the [2]SCD 3 was destroyed upon irradiation of UV light. The [2]SCD was recovered by heating the solution. This finding will contribute to development of ways to control the supramolecular structures by external stimuli.

Acknowledgements

This work was supported by a Grant-in-Aid for Scientific Research (12440199) from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References

(a) Rowan, S. J.; Cantrill, S. J.; Stoddart, J. F.; White, A. J. P.; Williams, D. J. Org. Lett. 2000, 2, 759–762; (b)

Jiménez, M. C.; Dietrich-Buchecker, C.; Sauvage, J.-P. Angew. Chem., Int. Ed. Engl. 2000, 39, 3284–3287.

- (a) Fujimoto, T.; Uejima, Y.; Imaki, H.; Jung, J. H.; Sakata, Y.; Kaneda, T. *Chem. Lett.* 2000, 564–565; (b) Fujimoto, T.; Sakata, Y.; Kaneda, T. *Chem. Lett.* 2000, 764–765.
- (a) Fujimoto, T.; Sakata, Y.; Kaneda, T. Chem. Commun. 2000, 2143–2144; (b) Hoshino, T.; Miyauchi, M.; Kawaguchi, Y.; Yamaguchi, H.; Harada, A. J. Am. Chem. Soc. 2000, 122, 9876–9877; (c) Onagi, H.; Easton, C. J.; Lincoln, S. F. Org. Lett. 2001, 3, 1041–1044.
- 4. Ueno et al. have reported the on-off switching of the dimer formation of a β -cyclodextrin-azobenzene dyad: Fukushima, M.; Osa, T.; Ueno, A. J. Chem. Soc., Chem. Commun. 1991, 15–17. However, the proposed structure of the dimer whose secondary faces are close to each other is not the pseudorotaxane.
- Jung, J. H.; Takehisa, C.; Sakata, Y.; Kaneda, T. Chem. Lett. 1996, 147–148.
- Compound 1: yellow solid, mp 238–240°C. Anal. found: C, 55.55; H, 7.86; N, 2.01%. Calcd for C₆₅H₁₀₂O₃₀N₂·H₂O: C, 55.38; H, 7.44; N, 1.98%. MALDI-TOF-MS (*m/z*): 1415 [M+Na]⁺. ¹H NMR (270 MHz, CDCl₃, 23°C): δ 7.92 (d, J=9.18 Hz, 2H, Hb), 7.86 (d, J=6.75 Hz, 2H, Hc), 7.49–7.43 (m, 3H, Hd, e), 7.07 (d, J=9.18 Hz, Ha), 5.11–4.99 (m, 6H, CD-H1), 4.47–3.05 (m, CD-H). Compound 2: orange solid, mp 144–146°C. Anal. found: C, 53.21; H, 7.08; N, 2.13%. Calcd for C₆₅H₁₀₂O₃₁N₂·3H₂O: C, 53.40; H, 7.08; N, 2.13%. MALDI-TOF-MS (*m/z*): 1431 [M+Na]⁺. ¹H NMR (270 MHz, CDCl₃, 23°C): δ 7.95 (s, 1H, Ar-OH), 7.78 (d, J=8.90 Hz, 2H, Hb), 7.71 (d, J=8.90 Hz, 2H, Hc), 6.97 (d, J=8.90 Hz, Ha), 6.87 (d, J=8.90 Hz, 2H, Hb), 5.05–4.92 (m, 6H, CD-H1), 4.43– 4.30, 4.01–3.99, 3.80–3.05 (m, CD-H).
- 7. Photoirradiation was performed with a high-pressure mercury arc lamp equipped with a $CuSO_4$ aqueous solution filter for isolating the light of 366 nm.
- 8. Association constant K_n was determined assuming that monomers M associate to form a single *n*-mer M_n .

$$n\mathbf{M} \rightleftharpoons^{\mathbf{K}_n} \mathbf{M}_n$$

$$K_n = ([M]_0 - [M])/n[M]^n$$

where *n* is the association number, [M] is the monomer concentration, and [M]₀ is the initial concentration of the monomer. The following three sets of the parameters (C_0 /mM, Ix, Iy) reported in Ref. 2b were used: (1.2, 1.38, 2.86), (0.6, 9.1, 11.5), and (0.3, 6.8, 6.0).